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Compounds of lead and cadmium have been shown to be carcinogenic to humans and experimental animals. However, the underlying mechanisms
are still not understood. In mammalian cells in culture, lead(lIl) is weakly mutagenic after long incubation times and generates DNA strand breaks
only after treatment with high, toxic doses. Cadmium(ll) induces DNA strand breaks and chromosomal aberrations, but its mutagenic potential is
rather weak. However, both metals exert pronounced indirect genotoxic effects. Lead(ll) is comutagenic towards UV and N-methyl-N-nitro-N-
nitrosoguanidine (MNNG) and enhances the number of UV-induced sister chromatid exchanges in V79 Chinese hamster cells. With regard to DNA
repair, lead(ll) causes an accumulation of DNA strand breaks after UV-irradiation in HeLa cells, indicating an interference with the polymerization or
ligation step in excision repair. Cadmium(ll) enhances the mutagenicity of UV light in V79 Chinese hamster cells and an increased sensitivity toward
UV light is observed in various rodent and human cell lines. Furthermore, an inhibition of unscheduled DNA synthesis after UV-irradiation and a par-
tial inhibition of the removal of UV-induced DNA lesions has been shown. For both metals, the indirect genotoxic effects are observed at low, non-
toxic concentrations, suggesting that an interference with DNA repair processes may be predominant at biologically relevant concentrations. This
might also explain the conflicting results of epidemiological studies obtained for both metals. Possible mechanisms of repair inhibiton are discussed.
- Environ Health Perspect 102(Suppl 3):45-50 (1994).
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Introduction
Even though the toxic effects of lead and
cadmium compounds have been studied
for many years, inconsistent results have
been published about their mutagenic, clas-
togenic, and carcinogenic properties.

Inorganic lead compounds are classified
as possibly carcinogenic to humans by the
International Agency for Research on

Cancer (IARC) (1). This classification is
based on results from animal studies, in
which lead compounds caused mainly renal
tumors in rats and mice after different
routes of delivery (2). Additionally, lead
acetate, lead subacetate, and lead oxide
enhanced the number of tumors induced
by some organic compounds, including 2-
(ethylnitrosamine)ethanol (3) and N-(4'-
fluoro-4-biphenyl)-acetamide (4). In
contrast, the evidence for carcinogenicity to

humans is still inadequate. While no excess

of overall cancer deaths in workers in lead-
related industries was observed in one

study (5), an elevated number of deaths
from all malignant neoplasms in smelter
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workers but not in battery plant workers
was reported (6); reevaluated by IARC,
these data were found to be not significant
(2). Much work has been done to deter-
mine the clastogenicity of lead compounds
by investigating chromosomal aberrations
in lymphocytes of lead-exposed workers.
However, the results remain contradictory,
which might be due in part to differences
in culture conditions (7). Furthermore, it
is not clear whether inorganic lead com-
pounds exert clastogenic effects themselves,
or whether they enhance chromosomal
aberrations induced by compounds that
occur simultaneously or arise during cell
culturing (8-10).

Both soluble compounds of cadmium(II)
such as CdCl2 and CdSO4 as well as insolu-
ble compounds like CdS and CdO are car-
cinogenic in experimental animals (11,12).
In rats, the number of tumors induced by
dimethylnitrosamine was enhanced by sub-
sequent treatment with CdCl2 (13). Several
epidemiological studies point toward a
higher frequency of tumors of exposed
humans (14-16) and an increased inci-
dence of renal cancer in smokers (17). A
recent follow up of one of the studies (14)
in a cadmium smelter in the United States
confirmed a statistically significant excess
in mortality from lung cancer (18,19).
However, since the interpretation of epi-
demiological studies is always complicated
by simultaneous exposures to other toxic or
genotoxic agents (like arsenic in the cad-

mium smelter), studies in cultured cells are
important to establish possible mechanisms
of genotoxic action.

Regarding the genotoxicity in bacterial
and mammalian cells in culture, the results
are still conflicting: in bacteria, both cad-
mium(II) and lead(II) are not mutagenic,
and in mammalian cells mutagenic effects
are rather weak. In contrast, there are indi-
cations for rather indirect mechanisms of
genotoxicity, which may be due to an
interaction with DNA repair processes.
The aim of the present article is to summa-
rize both direct and indirect genotoxic
effects of cadmium(II) and lead(II) and to
elucidate the role ofDNA repair inhibition in
the genotoxicty ofcompounds ofboth metals.

Direct Genotoxic Effects
Lead(l)
The direct genotoxic potential of lead(II)
in mammalian cells is weak and mainly
restricted to toxic doses. In V79 Chinese
hamster cells, both soluble and insoluble
compounds of lead have been shown to be
weakly mutagenic at the hprt locus after 5
days of incubation; additionally, the num-
ber of cell transformations in Syrian ham-
ster embryo cells was enhanced after
treatment with lead acetate (20). This
weak mutagenic potential has been con-
firmed recently, where lead acetate was
mutagenic at a toxic dose at the E. coli gpt
locus transfected to V79 cells (21). In V79
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Table 1. Modulation of genotoxicity and interaction with DNA repair by lead(lI) in mammalian cells.

Lead(ll) in Dose,
combination with Cell line pM Effect Reference

UV light V79 0.5-3 Enhanced mutation frequency Hartwig et al.
(hpM (221

V79 400 Enhanced mutation frequency Roy and Rossman
(E. coli gpt (21)

V79 1-10 Enhancement of Hartwig et al.
sister chromatid exchanges (22)

HeLa 500 Accumulation of DNA strand Hartwig et al.
breaks during repair (22)

MNNG V79 400 Enhanced mutation frequency Roy and Rossman
(E coli gpt (21)

X-rays HeLa 250 Inhibition of recovery of DNA Skreb and
synthesis after X-irradiation Habazian-Novak

(32)
MNNG, N-methyl-N'nitro-N-nitrosoguanidine.

cells, neither lead acetate (20,22) nor lead
sulfide (20) induced a significant number of
sister chromatid exchanges. Furthermore, no

DNA strand breaks or DNA-protein cross-

links could be detected by alkaline elution
(20) or nucleoid-sedimentation (22). In
contrast, at toxic doses lead acetate and lead
nitrate induced DNA breaks determined by
nick translation (21).

Cadmium(II)
In bacterial test systems, cadmium(II) was

mostly not mutagenic (23). However, this
may be due to a reduction of bioavailability
of cadmium(II) by interaction with media
components (24). In V79 Chinese hamster
cells, CdCl2 induced DNA single-strand
breaks, DNA-protein cross-links (25), and
chromosomal aberrations (26). Further-
more, it enhanced the number of mutations
at the thymidine kinase (tk) locus in mouse

lymphoma L51784/TK+- cells (27) and at

the hprt locus in V79 cells (25,28).
Concerning the generation of DNA single-
strand breaks and chromosomal aberrations,
the involvement of reactive oxygen species
has been shown (29,30), which might be
mediated by a decrease in intracellular glu-
tathione induced by cadmium(II) at similar
concentrations (31).

Indirect Genotoxic Effects and
Inhibition of DNA Repair
Lead(Tl)
Although inorganic lead compounds
exhibit only a weak mutagenic potential,

they show more pronounced comutagenic
activities in combination with other DNA-
damaging agents (Table 1). In V79
Chinese hamster cells, lead acetate

enhanced the frequencies of UV-induced
mutations at the hprt locus as well as sister
chromatid exchanges (22). The comuta-

genicity toward UV light was confirmed
recently in G12 cells; additionally, an

enhancement of mutations induced by N-
methyl-N'-nitro-N-nitrosoguanidine
(MNNG) by lead(II) was shown (21).
These effects seem to be due to an interfer-
ence with DNA repair processes, since lead
ions caused an accumulation of DNA
strand breaks after UV irradiation, as

shown in human HeLa cells (22). Since the
repair of UV-induced DNA damage is
mediated by the nucleotide excision repair
pathway, which is characterized by the
transient occurrence of DNA strand breaks
as a result of incisions at the sites of dam-
age, an accumulation of breaks points
toward an inhibition of the polymerization
or ligation step by lead(II). Regarding the
effects of lead ions on the repair of X-ray
induced-DNA damage, the results are con-

troversial. While 250 pM lead chloride
inhibited the recovery of DNA synthesis
after X-irradiation in HeLa cells, indicating
an inhibition of repair of X-ray-induced
DNA lesions (32), no effect of lead acetate

on the resealing of X-ray-induced DNA
strand breaks was observed in the same cell
line (33). However, since lead ions are

taken up only slowly in mammalian cells
(22), the preincubation time of 30 min

might not have been sufficient in the latter
study. The inhibition of DNA repair as

one mechanism of genotoxicity has also
been supported by several articles concern-

ing the interaction of lead ions with iso-
lated enzymes involved in DNA processing
and repair. In this context, a decreased
fidelity of the DNA polymerase from avian
myeloblastosis virus (AMV) in the presence

of lead chloride has been shown (34); how-
ever, the concentration of 4 mM applied
was very high. The results concerning a

possible inhibition of DNA polymerases
are controversial. Polymerase a and RNA
polymerase II isolated from HeLa cells
were inhibited by 80 and 150 mM lead
acetate. Similarily, DNA- and RNA-syn-
thesis was reduced in intact nuclei from
HeLa cells after incubation with similar
concentrations of the metal compound. No
inhibition of DNA- or RNA-synthesis,
however, was found in intact HeLa cells
after exposure to 500 pM lead acetate for
up to 18 hr, indicating a lack of biovailabil-
ity of lead ions (35). While an inhibition
of isolated human polymerase P at concen-

trations as low as 10 mM lead nitrate was

demonstrated (36), an increase in DNA
polymerase , mRNA as observed in prolif-
erating hepatocytes after lead nitrate
administration to male Wistar rats (37).

Cadniuml)

In addition to the direct genotoxic effects
described above, one other line of evidence
suggests the enhancement of genotoxicity
of other DNA damaging agents by cad-
mium(II), possibly by interfering with
DNA repair processes involved in the
removal of DNA damage induced by alky-
lating agents or UVC irradiation. These
effects are summarized in Table 2.

In bacterial test systems, a comutagenic
effect of cadmium(II) in combination with
methyl nitrosourea (MNU) was observed
in S. typhimurium (38,39) and confirmed
in E. coli (40). The latter effect was due to

the inactivation of the O-methylguanine-
DNA methyl transferase (MGTase) (41).
This protein protects cells from cytotoxic
and mutagenic DNA damage after expo-

sure to alkylating agents by accepting the
methyl group from 06-methylguanine and
thereby reversing the damage. Further-
more, the methylated protein induces its
own biosynthesis by transcriptional activa-
tion of the ada gene (42). The effect of
cadmium(II) on this protein was attrib-
utted to the inhibition of its transcriptional
activity, possibly by binding to critical
methyl group acceptor sites (41). When
the MGTase was isolated from E. coli, rat
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INHIBMON OFDNA REPAIR BY LEAD(II) AND CADMIUM(II)

Table 2. Modulation of genotoxicity and interaction with DNA repair by cadmium(II).

Cadmium (II) in Dose
combination with Cell line ,uM Effect Reference

Bacterial test systems
MNU E coli 10-500 Enhanced mutation frequency Takahashi et al.

(40)

MNNG S. typhymurium 250-500 Enhanced mutation frequency Mandel and Ryser
(38)

MMS E coli 250-500 Enhanced mutation frequency Takahashi et al.
(56)

Mammalian cells
UV light V79 0.5-2 Enhanced mutation frequency Hartwig and Beyersmann

(hprt) (28)

Human fibroblasts 5 Reduction of Nocentini
colony forming ability (45)

Human fibroblasts 4 Inhibition of Nocentini
unscheduled DNA synthesis (45)

Human fibroblasts 4 Accumulation of DNA strand Nocentini
breaks during repair (45)

HeLa 5 Inhibition of thymine-thymine Snyder et al.
dimer removal (33

benzo(a)pyrene SHE 1.9 Enhancement of Rivedal and Sanner
morphological transformations (5)

Abbreviations: MNU, methyl nitrosourea; MNNG, N-methyl-N'-nitro-N/nitroguanidine; MMS, methyl methanesulfonate.

Table 3. Cellular damage induced by lead(ll) in V79 cells.

Observed Dose, Treatment time CFA
effect gM hr % of control Reference

Comutagenicity
with UV, hprt 0.5-3 48 not reduced Hartwig et al.

(22)

(E coli gpta) 400 24 not reduced Roy and Rossman
with MNNG (21)

(E co/i gpta) 400 24 not reduced Roy and Rossman
(21)

Zelikoff et al.
Mutations hprt 500-2000 120 94-56 (20
(E coli gpt8) 1700 120 40-50 Roy and Rossman

(21)
DNA strand breaks
(nick translation a) 1700 120 40-50 Roy and Rossman

(21)
a G12 cells (V79 cells carrying an E coligptgene).

liver, or human cells, it was inactivated by
cadmium(II) (43,44). However, no data
concerning the interaction of cadmium
with alkylating agents in mammalian cells
are currently available.

In contrast, there are some indications
for an interference by cadmium(II) with
UV-induced DNA damage in mammalian
cells. We observed an enhancement ofUV-
induced mutagenicity by CdCl2 in V79
cells (28) as well as an increase in UV-
induced cytotoxicity by nontoxic concen-
trations of CdCl2 in various cell lines
including V79, CHO, HeLa, and human
fibroblasts. The enhancement of cytotoxic-
ity could be attributed to an interference
with DNA repair processes, since no
altered sensitivity toward UV irradiation in
the presence of cadmium(II) was detected
in repair-deficient human fibroblast
Xeroderma pigmentosum complementa-
tion group A (XPA) (Hartwig and
Beyersmann, unpublished). Cadmium(II)
caused a reduction in unscheduled DNA
synthesis (UDS) and an accumulation of
DNA strand breaks following UV irradiation
in human fibroblasts (45). Furthermore, a
partial inhibition of the removal of UV-
induced pyrimidine dimers by cadmium(II)
was shown, while the resealing of DNA
strand breaks generated by X-rays was not
affected (33). Concerning isolated enzymes
involved in DNA replication and repair, an
inhibition of DNA polymerase 3 at low
concentrations of cadmium acetate was
observed (36), as well as a decrease in the
fidelity ofDNA polymerization in the pres-
ence of cadmium(II) (34).

Relevance ofGenotoxicity Enhancng
Effects and Repair Inhibition in
Mammalian Cel
The results described so far demonstrate
that cadmium(II) and lead(II) are geno-
toxic themselves and enhance the genotoxi-
city of other DNA damaging agents.
However, to assess the relevance of the
observed effects, the concentrations applied
have to be considered. A comparison
among the different types of cellular dam-
age, the effective concentrations, and the
reduction in colony-forming ability as a
parameter of cytotoxicity after the respec-
tive treatments is presented in Tables 3 and
4. Since different cell lines vary consider-
ably in their sensitivities toward metal
compounds, only those effects published
for V79 Chinese hamster cells have been
listed.

Lead(II) enhanced the frequencies of
UV-induced mutations and sister chro-
matid exchanges at very low, nontoxic con-
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Table 4. Cellular damage induced by cadmium(II) in V79 cells.

Observed Dose Treatment CFA
effect [mM] time (hr) (% of control) Reference

Comutagenicity 0.5-2 19 Not reduced Hartwig & Beyersmann (28)
with UV (hprt)

Mutagenicity 1-3 24 100-70 Ochi & Osawa (25)

(hprt) 2 19 Not reduced Hartwig & Beyersmann (28)

Chromosomal 10-50 2 50-0 Ochi et al (26)
aberrations

DNA strand breaks 20-200 2 20-0 Ochi & Osawa (25)
(alkaline elution)

Reduction of GSH 20-200 2 20-0 Ochi et al (31)

centrations (22). Even though the doses
applied in the second study were much
higher, the authors confirmed a comuta-

genic activity of lead(II) in combination
with UV light and MNNG on conditions
in which the colony-forming ability was

not reduced (21). In neither study was

lead(II) alone mutagenic on these condi-
tions; mutations as well as DNA strand
breaks occurred only after long-term treat-

ment at much higher cytotoxic doses
(20,21).

Regarding cadmium(II), comutagenicity
in combination with UV light was

observed at low doses, which did not lead
to a reduction in colony-forming ability.
The mutagenicity of cadmium itself
occurred at similar low concentrations;
however, the mutagenic potential was

rather weak compared to the comutagenic
effects. In contrast, chromosomal aberra-
tions and DNA single-strand breaks were

generated only at considerably higher con-

centrations. Even though the treatment

time of 2 hr was comparatively short, these
effects arose at highly toxic concentrations
only. Even under these conditions, a reduc-
tion in cellular glutathione content was

generated by cadmium(II), which might
render the cells more susceptable to dam-
age by oyxgen free radicals.

Possible Mechanisms of
Repair Inhibition

There are several possible mechanisms by
which cadmium(II) and/or lead(II) might
interfere with DNA repair processes. While
the comutagenicity of cadmium(II) in com-

bination with alkylating agents in bacteria

could be attributed to the inactivation of the
0Y-methylguanine-DNA methyl transferase,
the inhibition of excision repair by both met-

als is not yet understood.
For lead and cadmium ions, the accumula-

tion ofDNA strand breaks after UV irradia-
tion obtained from nucleoid sedimentation
in HeLa cells [(22); Hartwig and
Beyersmann, unpublished] and in the case of
cadmium from alkaline elution in human
fibroblasts (45), suggest an inhibition of the
polymerization or ligation step in excision

repair. This could be due to either enzyme

inactivation or changes in DNA structures,

preventing repair enzymes from binding. The
interactions of lead and cadmium ions were

investigated with isolated DNA polymerase
(36). The authors found that for both metals
the inactivation was mediated by the reaction
with the enzyme itself, not with the template
primer or the deoxynudeoside triphosphate
substrate. One reason for this inhibition
could be the competition with zinc ions,
which are essential in DNA polymerases
(46). Furthermore, other DNA binding pro-

teins involved in excision repair have been
shown to contain zinc-finger motifs in their
DNA binding domain (47). For example,
the zinc-finger structure in the recently
doned and characterized Xeroderma pigmen-
tosum group A complementing (XPAC) pro-

tein has been shown to be essential for the
excision repair process (48). In support of a

possible competition between cadmium(II)
and zinc(II) in DNA repair, a partial
reversibility of repair inhibition by cad-
mium(II) (unscheduled DNA synthesis,
accumulation of DNA strand breaks) in
human fibroblasts was observed, when
zinc(II) was given simultaneously in a 10-fold

molar excess. Additionally, the enhancement
of UV-induced cytotoxicity by cadmium(II)
was reversed by zinc(II) (45) an effect which
also has been observed by us [Hartwig and
Beyersmann, unpublished]. However, the
interpretation of these results is complicated
by the fact that cadmium(II) and zinc(II)
compete at the level of cellular uptake (49)
and the effect might therefore be due to a

diminished uptake of cadmium in the pres-

ence of zinc(II). With isolated polymerase fB,
the inhibition by lead(II) or cadmium(II) was

not reversible by the subsequent addition of a

10-fold molar excess of zinc(II), and the
inhibitory effect of cadmium(II) was even

smaller when the polymerase was activated by
zinc(II) instead of manganese(II) (36).
Whether or not an inhibition of the polymer-
ization step is the underlying mechanism of
repair inhibition by lead(II) or cadmium(II)
in intact cells has yet to be elucidated. Even
though polymerase ,B is involved in cellular
repair synthesis, it is thought to act mainly on
short gaps generated during base excision
repair (50), whereas after UV irradiation
DNA polymerase 6 catalyzes the formation of
repair patches (51,52). Besides a direct inter-
action with repair enzymes, lead and cad-
mium ions might also interfere with
calcium-regulated processes involved in the
regulation ofDNA replication and repair. In
this context, the specific calmodulin-inhibitor
triflouperazine has been shown to inhibit the
repair of UV-induced pyrimidine dimers
(53) and to potentiate the lethality of
bleomycin (54). Even though manifold
interactions between lead and calcium con-

cerning uptake, calcium homeostasis and
substitution of lead(II) for calcium(II) have
been investigated (55), their potential role in
repair inhibition has yet to be elucidated.

Conclusions
In summary, the results suggest that for com-
pounds of both metals, the indirect genotoxic
effects may be predominant at biologically
relevant doses. Especially for lead(II), the
interference with DNA repair processes seems

to be the main mechanism of genotoxicity.
This might help to explain the conflicting
results of epidemiological studies with regard
to the clastogenic and carcinogenic potential
of lead compounds. In mammalian cells,
both cadmium(II) and lead(II) have been
shown to interfere with the repair of UV-
induced DNA damage. Since the removal of
these DNA lesions is mediated by the
nucleotide excision repair system, which is
generally acting on bulky DNA damage, it
may be expected that lead and cadmium also
increase the genotoxicity when combined
with other DNA damaging agents.
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